

What do you use a galaxy cluster for?

- 1. Astrophysics
 - a. Galaxy Evolution
 - b. Hot Gas Physics
 - 2. Cosmology
 - a. Cosmological Parameters
 - b. Study Dark Matter
 - 3. Test GR

1. Feedback Physics in Clusters

AGN Heating and Cooling

MS 0735.6+7421 (z=0.216)

Evolution of Clusters from Feedback Study

Current Constraint on Cosmology

What do you use a galaxy cluster for?

- 1. Astrophysics
 - a. Galaxy Evolution
 - b. Hot Gas Physics
 - 2. Cosmology
 - a. Cosmological Parameters
 - b. Study Dark Matter
 - 3. Test GR

SPT-CL J0417-4748: A Case of a Relaxed Galaxy Cluster Lacking Central Star Formation

Taweewat Somboonpanyakul Chulalongkorn University, Bangkok, Thailand 6·12·2025

Our conventional wisdom of galaxy clusters

- All member galaxies are red-and-dead ellipticals
- BCGs are especially massive, red, and quiescent
- Clusters host extremely hot intracluster medium (ICM)
 - Seen as extended X-ray emission

Images of Abell 1835 (z = 0.25) at X-ray, optical and mm wavelengths. All three images are centered on the X-ray peak position and have the same spatial scale, 5.2 arcmin or \sim 1.2 Mpc on a side

8

Our conventional wisdom of galaxy clusters

- Matches our current understanding of cluster formation
- BCG sits at the center of the gravitational potential well
 - Grows via mergers with member galaxies
 - Experiences AGN feedback
 - Gas depleted → Star formation quenched

BCGs

BUT!

BUT! Clusters with unconventional properties

Detailed observations reveal that our simple models fail to capture the diversity of galaxy clusters. Some striking examples include:

- Phoenix clusters
- H1821+643
- IRAS 09104+4109
- Abell 1835
- RX J1532.9+3021
- MACS 1931.8-2634
- RBS 797

Phoenix Cluster: A Starburst-Hosted Cluster

- Star Formation Rate: ~600
 Mo/yr (extremely high)
- Strong Cool Core: Core
 X-ray density > 0.1 cm⁻³
- Relaxed ICM Morphology:
 Smooth and symmetric

H1821+643: A Quasar-Hosted Cluster uum)

- BCG hosts a luminous quasar with powerful radio jets
- AGN accretion rate: ~40
 Mo/yr (Russell+2010)
- Starburst phase: SFR = ~120
 Mo/yr (Calzadilla+2022)
- Mass deposition rate: Up to 3000 Mo/yr (Russell+2024)

Our Current Understanding of the AGN Feedback

Massive

BUT... (the 2nd time)

BUT... a New Puzzle: SPT-CL J0417-4748

- A massive galaxy cluster at z=0.58
- Yet shows no detectable star formation.
- What's going on here?

SPT-CL J0417-4748: A Deep Chandra Study of a Relaxed Galaxy Cluster Without Central Star Formation

Taweewat Somboonpanyakul et al. (in prep.)

No Signs of AGN Activity in the BCG

- Radio (ASKAP): No radio detection at BCG location → Suggests no strong AGN activity or jets.
- Infrared (Spitzer): BCG and nearby sources do not meet IR-AGN color criteria.

No Signs of Star Formation in the BCG

- Unbinned spectrum shows no emission lines → Including [O II] and Hβ
- Using [O II] non-detection → SFR < 3.8 Mo/yr (McDonald+2016)
- Confirms very low star formation in the BCG.

X-ray View of SPT-CL J0417–4748

Core shows a moderately peaked, slightly asymmetric X-ray morphology

Exposure time: 18+85 ks, $M_{500} = 5e14$ Msun,

Electron Density, Temperature, and Metallicity Profiles

Electron Density: Peaked X-ray core, typical for strong cool-core clusters

Temperature: Strong cool-core with temperature rise from 5 - 9 keV

Metallicity: Core Enhancement → Suggests past cooling or star formation enriched the center

Entropy and Cooling Time: Probing ICM thermal history

Entropy: (heat content of the gas) $K(r) = kT(r) \times n_e(r)^{-2/3}$

- → Flat core:
- → Outer profile follows typical

relaxed cool-core behavior

→ **Note**: Center offset by 0.76" may

affect inner-bin accuracy

Cooling Time:

- → tcool ~ 640 Myr at r<6 kpc
- ightarrow Falls below 1 Gyr threshold ightarrow

indicates strong cool-core!

Possible Scenarios for This Cluster

Sloshing Feature

Abell 2029 (SFR = 0.6 Msun/yr)

Accretion from the Hot Phase

The Evolution of Radio AGN Activity in Brightest Cluster Galaxies Unated up ICM Unated up ICM

Advisor
Dr. Taweewat Somboonpanyakul (CU)

Radio-loud-AGN is a potential answer to cooling flow problem in BCG.

Background

Challenge

Objective

- Difficulties in obtaining radio-loud AGNs in BCGs at high redshift due to inherent limitations of radio astronomy.
- Find the radio-loud AGNs' influence on the evolution of cooling flow in BGCs.

Integral Field Unit Observations of Low-Redshift Compact HII Galaxies

EDA 2816114 SDSS J161245.52+081701.0 (z = 0.136495) (z = 0.149143)

9.15.9.30am

Theerachot Rattanasiridamri (CU)

Advisors

Dr. Krittapas Chanchaiworawit (NARIT)

Dr. Taweewat Somboonpanyakul (CU)

Characteristics

high SFR, strong emission lines, low metallicity

Importance

low-z analogs of high-z SFGs in the early Universe

Objectives

- To study emission lines, kinematics, dust extinction, and SFR with the GTC/MEGARA IFU instrument.
- To study the star formation and galaxy evolution in the early Universe.

A Possible Scenario for This Cluster (?)

Abell 2029 - Sloshing Feature (SFR = 0.6 Msun/yr)

Galaxy Cluster Evolution: A Story Still Unfolding

- Questions in galaxy cluster studies: How do cooling and AGN feedback shape cluster evolution over cosmic time?
- Over the past decade, we've realized:
 - → The cooling-feedback cycle is **far more complex** than we once thought.
- Conventional view:
 - → Galaxy clusters don't form stars
 - → Massive clusters often do
 - → Yet, **some massive clusters** show **no** star formation
- This talk highlights one such case:
 - → SPT-CL J0417-4748 a massive, relaxed cluster without star formation
- This exception reminds us:
 - The story is far from over and that's what makes science exciting!